Singular Character of Critical Points in Nuclei
نویسنده
چکیده
The concept of critical points in nuclear phase transitional regions is discussed from the standpoints of Q-invariants, simple observables and wave function entropy. It is shown that these critical points very closely coincide with the turning points of the discussed quantities, establishing the singular character of these points in nuclear phase transition regions between vibrational and rotational nuclei, with a finite number of particles.
منابع مشابه
Singular Character of Critical Points in Nuclear Transitional Regions
The concept of critical points in nuclear phase transitional regions is discussed from the standpoints of Q-invariants and wave function entropy. It is shown that these critical points very closely coincide with the turning points of the entropy and Q-invariants, establishing the singular character of these points in nuclear phase transition regions. Such critical points provide two well define...
متن کاملThe Uniqueness Theorem for the Solutions of Dual Equations of Sturm-Liouville Problems with Singular Points and Turning Points
In this paper, linear second-order differential equations of Sturm-Liouville type having a finite number of singularities and turning points in a finite interval are investigated. First, we obtain the dual equations associated with the Sturm-Liouville equation. Then, we prove the uniqueness theorem for the solutions of dual initial value problems.
متن کاملGeneralized Helices and Singular Points
In this paper, we define X-slant helix in Euclidean 3-space and we obtain helix, slant helix, clad and g-clad helix as special case of the X-slant helix. Then we study Darboux, tangential darboux developable surfaces and their singular points. Especially we show that the striction lines of these surfaces are singular locus of the surfaces.
متن کاملBifurcation in a variational problem on a surface with a constraint
We describe a variational problem on a surface under a constraintof geometrical character. Necessary and sufficient conditions for the existence ofbifurcation points are provided. In local coordinates the problem corresponds toa quasilinear elliptic boundary value problem. The problem can be consideredas a physical model for several applications referring to continuum medium andmembranes.
متن کاملSingular constrained linear systems
In the linear system Ax = b the points x are sometimes constrained to lie in a given subspace S of column space of A. Drazin inverse for any singular or nonsingular matrix, exist and is unique. In this paper, the singular consistent or inconsistent constrained linear systems are introduced and the effect of Drazin inverse in solving such systems is investigated. Constrained linear system arise ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001